skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Boccaletti, Stefano"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In stock markets, nonlinear interdependencies between various companies result in nontrivial time-varying patterns in stock prices. A network representation of these interdependencies has been successful in identifying and understanding hidden signals before major events like stock market crashes. However, these studies have revolved around the assumption that correlations are mediated in a pairwise manner, whereas, in a system as intricate as this, the interactions need not be limited to pairwise only. Here, we introduce a general methodology using information-theoretic tools to construct a higher-order representation of the stock market data, which we call functional hypergraphs. This framework enables us to examine stock market events by analyzing the following functional hypergraph quantities: Forman–Ricci curvature, von Neumann entropy, and eigenvector centrality. We compare the corresponding quantities of networks and hypergraphs to analyze the evolution of both structures and observe features like robustness towards events like crashes during the course of a time period. 
    more » « less
  2. Abstract A chaotic dynamics is typically characterized by the emergence of strange attractors with their fractal or multifractal structure. On the other hand, chaotic synchronization is a unique emergent self-organization phenomenon in nature. Classically, synchronization was characterized in terms of macroscopic parameters, such as the spectrum of Lyapunov exponents. Recently, however, we attempted a microscopic description of synchronization, called topological synchronization , and showed that chaotic synchronization is, in fact, a continuous process that starts in low-density areas of the attractor. Here we analyze the relation between the two emergent phenomena by shifting the descriptive level of topological synchronization to account for the multifractal nature of the visited attractors. Namely, we measure the generalized dimension of the system and monitor how it changes while increasing the coupling strength. We show that during the gradual process of topological adjustment in phase space, the multifractal structures of each strange attractor of the two coupled oscillators continuously converge, taking a similar form, until complete topological synchronization ensues. According to our results, chaotic synchronization has a specific trait in various systems, from continuous systems and discrete maps to high dimensional systems: synchronization initiates from the sparse areas of the attractor, and it creates what we termed as the ‘zipper effect’, a distinctive pattern in the multifractal structure of the system that reveals the microscopic buildup of the synchronization process. Topological synchronization offers, therefore, a more detailed microscopic description of chaotic synchronization and reveals new information about the process even in cases of high mismatch parameters. 
    more » « less